Closing Thu: Closing **Sunday**:

Exam 1 is Tues in quiz section

- covers 12.1-12.6, 13.1-13.3
- 4 pages of questions
- You get 50 minutes
- Allowed
 - One 8.5 by 11 inch sheet of handwritten notes (both sides)
 Ti-30x IIS calculator

13.2

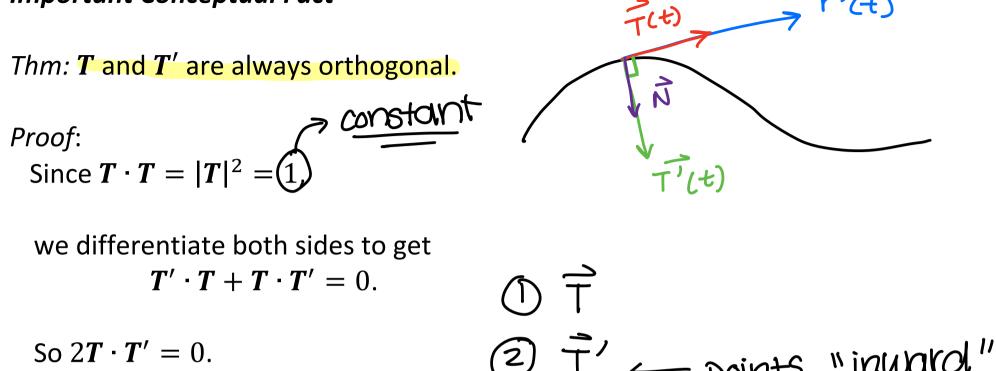
13.3

Here are some of my resources:

- Exam 1 Review
- Exam 1 Fact Sheet
- <u>My Exam Archive</u>
- Review HW and work thru *several* old exams to prepare.

13.3 Measurement Tools for Curves Warm Up: Consider $r(t) = \langle t, t^2, 0 \rangle$ (a) Are r'(t) and r''(t) always orthogonal? (b) Find T(t). $r'(t) = < 1, 2t, 0 > \frac{\tau angent}{\alpha coeleration}$ r''(t) = < 0, 2, 07 $r'(+) \cdot r''(+) = 0 + 4 + 0$ No, only when t=0 T(+) = unit tangent 51+4+2 T(t) = $< \frac{1}{\sqrt{1+4t^2}}, \frac{2t}{\sqrt{1+4t^2}}$ T'(+) is always perpendicular T(t)

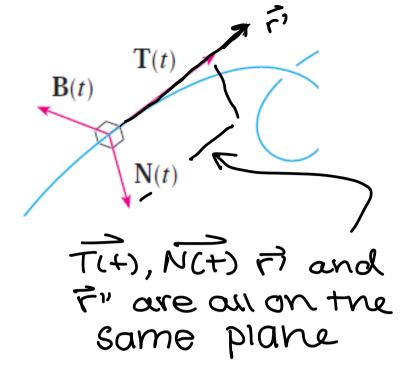
Important Conceptual Fact



'(+)

Thus, $T \cdot T' = 0$. (QED)

 $T(t) = \frac{r'(t)}{|r'(t)|} = \text{unit tangent}$ $N(t) = \frac{T'(t)}{|T'(t)|} = \text{principal unit normal}$ $N(t) = \frac{T'(t)}{|T'(t)|} = \text{principal unit normal}$ $N(t) = \frac{T'(t)}{|T'(t)|} = \text{principal unit normal}$



TNB-Frame Cool Facts:

- *T*(*t*) and *N*(*t*) together give a good approximation of the "plane of motion" called the *osculating (kissing) plane.*
- T(t), N(t), r'(t), and r''(t) are ALL parallel to the osculating plane

Good news: Useful measurement tools. *Bad news*: TNB vectors have messy formulas.

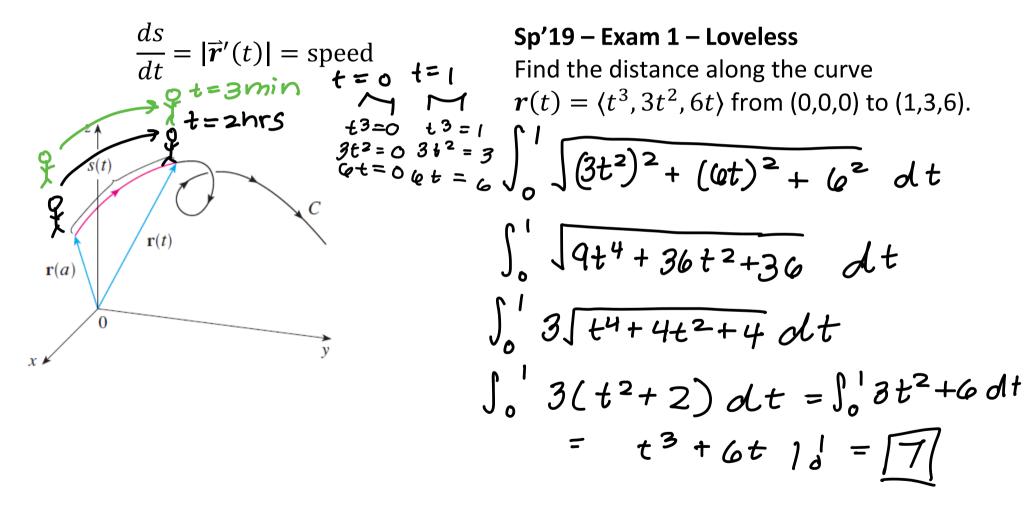
Basic Visual: https://www.math3d.org/f1rRKiN7

Sp'18 – Exam 1 – Loveless

Find the principal unit normal vector
$$\underline{N}(t)$$
 for
 $r(t) = \langle 3t, \cos(4t), \sin(4t) \rangle$. $\Im n^2 + \cos^2 = 1$
 $\overrightarrow{r'}(t) = \langle 3, -48in(4t), 4\cos(4t) \rangle$
 $|\overrightarrow{r'}| = \sqrt{q + 16sin^2(4t) + 16cos^2(4t)} = \sqrt{q + 16} = \sqrt{25} = 5$
 $\overrightarrow{T}(t) = \langle \frac{3}{5}, -\frac{4}{5}sin(4t), \frac{4}{5}cos(4t) \rangle$
 $\overrightarrow{T'}(t) = \langle 0, -\frac{16}{5}cos(4t), -\frac{16}{5}sin(4t) \rangle$
 $|\overrightarrow{T'}| = \sqrt{0 + \frac{16}{5}^2 \cos^2(4t) + \frac{16}{5}^2 \sin^2(4t)} = \sqrt{(\frac{16}{5})^2} = \frac{16}{5}$
 $\overrightarrow{N}(t) = \frac{T'(t)}{|T'(t)|} = \langle 0, -\cos(4t), -\sin(4t) \rangle$

Part 2: Arc Length (*i.e.* Distance)

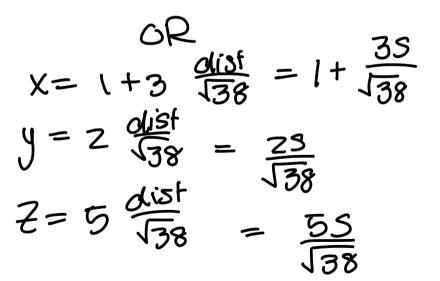
$$s(t) = \int_{a}^{t} \sqrt{\left(x'(u)\right)^{2} + \left(y'(u)\right)^{2} + \left(z'(u)\right)^{2}} du = \int_{a}^{t} |\vec{r}'(u)| du = \text{distance}$$



Visual: https://www.math3d.org/U6VxUFDG

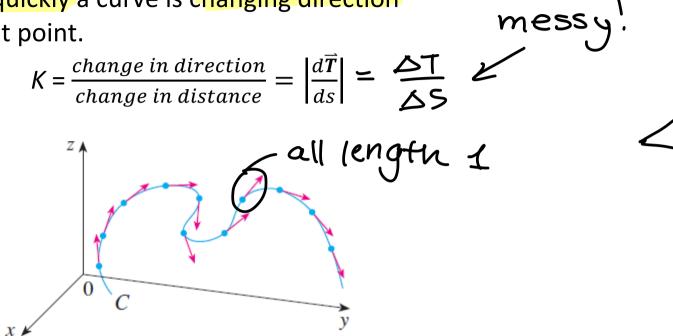
Reparameterizing a curve in terms of x = 1 + 3udistance traveled: = 24 N=TIME) Y Example 7 = 94 1. Find the length of the curve $r(u) = \langle 1 + 3u, 2u, 5u \rangle$ dist. from 0 to t. speed = $\sqrt{38}$ mph $S = \int^{t} \sqrt{3^2 + 2^2 + 5^2} \, du$ = $\int_{-1}^{t} \int \frac{38}{38} dt$ $\sqrt{38} \, \text{u} \, \left| \begin{array}{c} t \\ = \\ \sqrt{38} \, \text{t} \end{array} \right|$ $S = \sqrt{38t}$ distance= J38 (Time)

- 2.Reparameterize the curve in terms of arc length, *s*.
 - X = 1+3 (Time) = 1+3t Y = 2 (Time) = 2t Z = 5 (Time) = 5t



Curvature

The **curvature** at a point, *K*, is a measure of how **quickly** a curve is changing direction at that point.



 ΔT

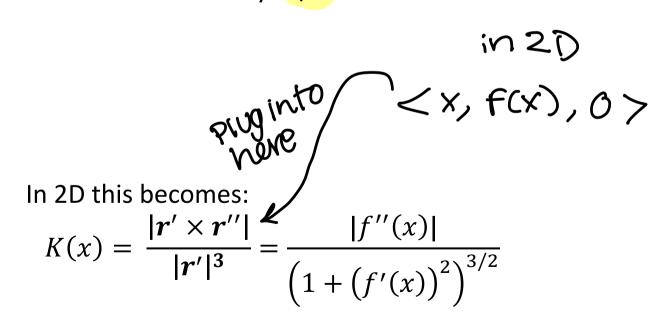
Roughly, how much does your direction change if you move a small amount ("one inch") along the curve?

$$\mathsf{K} \approx \left| \frac{\overline{T_2} - \overline{T_1}}{"one \ inch"} \right| = \left| \frac{\Delta \overline{T}}{\Delta s} \right|$$

This is NOT easy to compute directly from arc length, so instead we use this...

$$K(t) = \left| \frac{d\vec{T}}{ds} \right| = \frac{|\vec{T}'(t)|}{|\vec{r}'(t)|} = \frac{|\vec{r}'(t) \times \vec{r}''(t)|}{|\vec{r}'(t)|^3}$$

Cool Side Fact: The *radius of curvature* is the radius of the circle that would best fit this curve. It is always 1/K.



Proof of shortcut (feel free to ignore):

Theorem: $\frac{|T'(t)|}{|r'(t)|} = \frac{|r'(t) \times r''(t)|}{|r'(t)|^3}$ Proof: Since $T(t) = \frac{r'(t)}{|r'(t)|}$, we have r'(t) = |r'(t)|T(t).

Differentiating this gives (prod. rule): $\mathbf{r}''(t) = |\mathbf{r}'(t)|'\mathbf{T}(t) + |\mathbf{r}'(t)|\mathbf{T}'(t).$

Take cross-prod. of both sides with \overrightarrow{T} : $T \times r'' = |r'|' (T \times T) + |r'| (T \times T').$

Since
$$T \times T = \langle 0, 0, 0 \rangle$$
 (why?)
and $T = \frac{r'}{|r'|'}$, we have
 $\frac{r' \times r''}{|r'|} = |r'| (T \times T').$

Taking the magnitude gives (why?) $\frac{|r' \times r''|}{|r'|} = |r'| |T \times T'| = |r'| |T||T'|sin\left(\frac{\pi}{2}\right),$

Since
$$|m{T}|=1,$$
 we have $|m{T}'|=rac{|m{r}' imesm{r}''|}{|m{r}'|^2}$

Therefore

$$K = \left|\frac{d\mathbf{T}}{ds}\right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}' \times \mathbf{r}''|}{|\mathbf{r}'|^3}.$$

Proof for 2D (again feel free to ignore)

To find curvature for a 2D function, y = f(x), we can form a 3D vector function as follows $r(x) = \langle x, f(x), 0 \rangle$

so $\mathbf{r}'(x) = \langle 1, f'(x), 0 \rangle$ and $\mathbf{r}''(x) = \langle 0, f''(x), 0 \rangle$

Taking the cross-product gives... $r' \times r'' = \langle 0, 0, f''(x) \rangle$

Note that

$$|\mathbf{r}' \times \mathbf{r}''| = \sqrt{0^2 + 0^2 + (f''(x))^2} = |f''(x)|$$

and

$$|\mathbf{r}'(x)| = \sqrt{1 + (f'(x))^2}$$

Thus,

$$K(x) = \frac{|\mathbf{r}' \times \mathbf{r}''|}{|\mathbf{r}'|^3} = \frac{|f''(x)|}{\left(1 + \left(f'(x)\right)^2\right)^{3/2}}$$

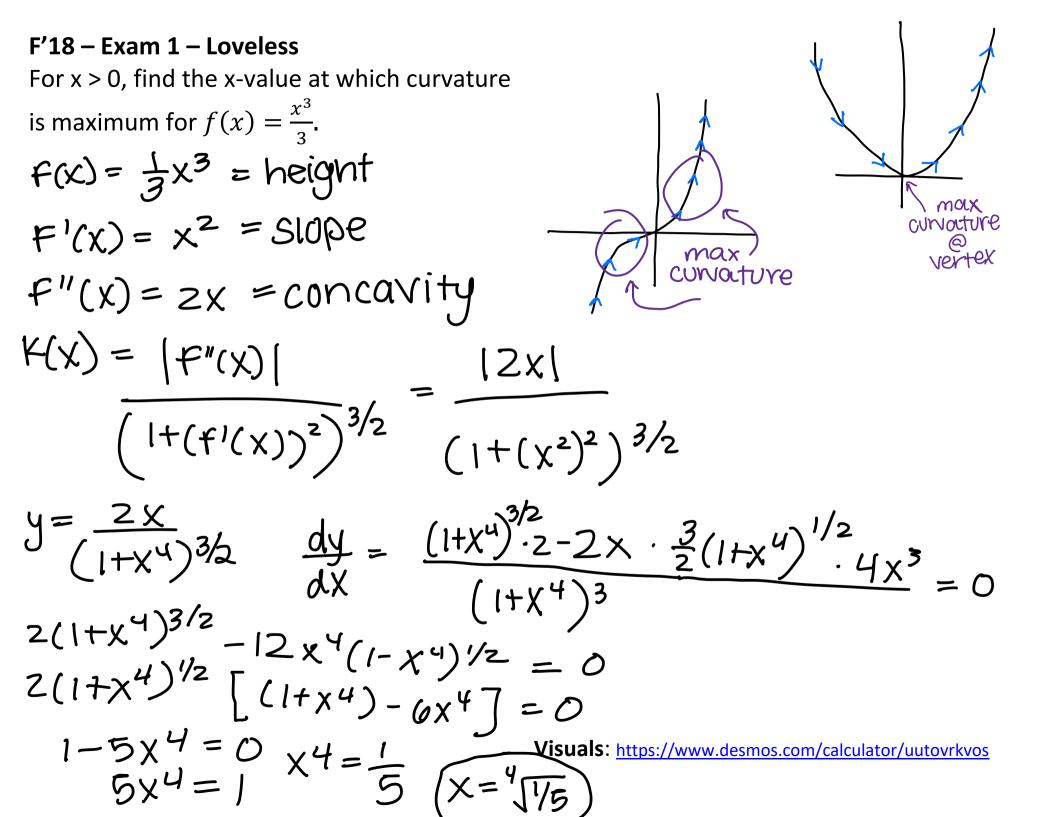
Sp'19 - Exam 1 - Loveless
Find the curvature of

$$r(t) = \langle t^3, 3t^2, 6t \rangle \text{ at } t = 0.$$

 $r'(t) = \langle 3t^2, 6t \rangle \text{ at } t = 0.$
 $r'(t) = \langle 3t^2, 6t \rangle \text{ at } t = 0.$
 $r'(t) = \langle 3t^2, 6t \rangle \text{ (b)} = 1$
 $r'(t) = \langle 3t^2, 6t \rangle \text{ (c)} = 1$
 $r'(t) = \langle 3t^2, 6t \rangle \text{ (c)} = 1$
 $r'(t) = \langle 3t^2, 6t \rangle \text{ (c)} = 1$
 $r'(t) = \langle 3t^2, 6t \rangle \text{ (c)} = 1$
 $r'(t) = \langle 3t^2, 6t \rangle \text{ (c)} = 1$
 $r'(t) = 1$
 $r'(t)$

Visuals: <u>https://www.math3d.org/ExiDP27d</u>

_



Preview of 13.4: Acceleration

If **t** = time and position is given by $r(t) = \langle x(t), y(t), z(t) \rangle$

then

$$r'(t) = \lim_{h \to 0} \frac{r(t+h) - r(t)}{h} =$$
velocity

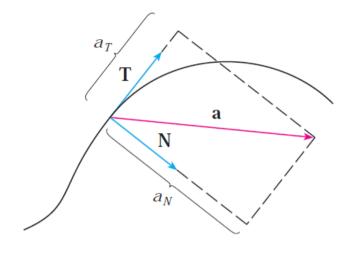
$$|\mathbf{r}'(\mathbf{t})| = \frac{\text{change in dist}}{\text{change in time}} = \text{speed} = \frac{\text{ds}}{\text{dt}}$$

Since $Force = \mathbf{F} = m \cdot \mathbf{a}$, we can think of acceleration as the way the object is being "pulled".

Sometimes acceleration causes the object to speed up or slow down and sometimes it makes the object turn.

$$r''(t) = \lim_{h \to 0} \frac{r'(t+h) - r'(t)}{h}$$
$$= \frac{\text{change in velocity}}{\text{change in time}} = a(t)$$

Tangential and Normal Components of Acceleration



Notes:

- *a_T* can be positive or negative (or zero)
 positive speedometer speed increasing
 negative speedometer speed decreasing
- *a_N* is always positive (or zero)
 (accel. points "inward" relative to the
 curve, but not always "directly" inward)

For interpreting use,

 $a_T = \nu' = \frac{d}{dt} |r'(t)| =$ "deriv. of speed" $a_N = k\nu^2 = \text{curvature} \cdot (\text{speed})^2$

Definition:

 $a_T = \operatorname{comp}_T(a) = a \cdot T$ = tangential comp. $a_N = \operatorname{comp}_N(a) = a \cdot N$ = normal comp. which can be rewritten as...

$$a_T = \frac{\boldsymbol{r}' \cdot \boldsymbol{r}''}{|\boldsymbol{r}'|}$$
 and $a_N = \frac{|\boldsymbol{r}' \times \boldsymbol{r}''|}{|\boldsymbol{r}'|}$

Projectile Visual: <u>https://www.math3d.org/QbuedSnK</u>